Hall Ticket Nu	mber:
----------------	-------

Code No. : 13304 O3

VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD B.E. (EEE) II Year I-Semester Old Examinations, May/June-2018

Electromagnetic Theory

Time: 3 hours

Max. Marks: 70

Note: Answer ALL questions in Part-A and any FIVE from Part-B

Part-A $(10 \times 2 = 20 \text{ Marks})$

- 1. State Gauss law for electrostatic fields.
- In the spherical coordinate system, the coordinates of a point are (3, 70°, 50°).
 Find the coordinates of a point in Cartesian and circular cylindrical coordinate systems.
- 3. Given that the relaxation time of a certain material is 1500 days. Identify the nature of that material and justify your answer.
- 4. Define the term Polarization.
- 5. Define the terms magnetic susceptibility and dipole moment.
- 6. Name two fundamental laws used in magneto static fields to determine the magnetic field strength of an electromagnet. Is there any interdependency between them? If so mention it.
- 7. Mention at least four applications of Faraday's laws of electromagnetic induction.
- 8. In a non magnetic medium $E = 5 \sin(2\pi \times 10^7 t 0.9x)a_x$ V/m. Find ε_r and η .
- 9. Define the term electromagnetic compatibility.
- 10. What is the purpose of grounding?

Part-B $(5 \times 10 = 50 \text{ Marks})$

11.	a) Four charges of each -12 C are placed at the four corners of a square of side 13 cm Determine E at the center of square.	[0]
	b) Derive the relationship between the strength of electric field (E) and its electric potential	[4]
12.	a) State and explain Uniqueness theorem.	[5]
	b) Two extensive homogeneous isotropic dielectrics meet on plane Z= 0. For z > 0, ε _{r1} =4 and for z < 0, ε _{r2} =5. A uniform electric field E1= 5 a _x -3 a _y + 6 a _z kV/m exists for z ≥ 0. Find for z ≤ 0.	[5]
13.	a) Obtain an expression for magnetic field intensity due to an infinitely long coaxial cable.	[6]
	b) Write the analogy between electric and magnetic circuits.	[4]
14.	a) Derive the wave equation for uniform plane waves.	[5]
	b) In a medium characterized by $\sigma = 0$, $\mu = \mu_0$, ϵ_0 and $H = 30 \sin(10^8 t - \beta z) a_y$ A/m, Calculate β_0 and E.	[5]
15.	a) Explain different sources and characteristics of EMI.	[6]
	b) What is the purpose of shielding?	[4]

[5]

[5] [5]

- 16. a) A point charge of 26 μ C is located at origin, a uniform line charge density of 65 nC/m lies along the x-axis and a uniform sheet of charge with 78 nC/m² lies in z=0 plane. Find [6] electric flux density at point K(6,-8,-5).
- b) Given that, with reference to a conductor-free space interface one of the boundary condition is that inside the conductor, the static electric field intensity is zero. Is it true? [4]
- 17. Answer any two of the following:
 - a) Write Four Maxwell Equations for time variant fields and give their significance.
 - b) State and Prove Poynting's Theorem
 - c) Discuss the Control techniques of EMI
 - ŧ §§§§§§